Students Creative Thinking Ability with Reflective Cognitive Style on The Phytagoras Theorem
Abstract
Mathematics is a universal science that cannot be separated from human life. Mathematics has an important role in supporting the development of science and technology. In learning mathematics, students' creativity is needed because in mathematics students are expected to be able to come up with new creative ideas in analyzing and solving problems. The way students solve problems will be different according to their cognitive style. So that differences in cognitive styles can trigger differences in students' creative thinking. The type of research used in this research is qualitative research with descriptive method. The subjects in this study were students of class VIII K at SMP Negeri 2 Balaraja who had received the Pythagorean theorem material. Subject selection was done by purposive sampling technique. The instruments used in this study were test and non-test instruments. The test instrument used is the Matching Familiar Figures Test (MFFT) test sheet and the creative thinking ability. While the non-test instrument used in this study was an interview guide. The data analysis of this research used the constant comparative method. Data analysis in this study was carried out through three stages, namely: 1) data reduction, (2) data presentation, (3) drawing conclusions.Based on the results of the data analysis and discussion that has been presented, it can be concluded that based on the reflective cognitive style, students' mathematical creative thinking abilities can be grouped into 2 groups in each indicator with different creative thinking abilities.
References
Andianti, T., & Rafianti, I. (2021). Analisis kemampuan berpikir kreatif matematis ditinjau dari self-regulated learning siswa smp. Wilangan : Jurnal Inovasi dan Riset Pendidikan Matematika 2(1), 26–35.
Apino, E., & Retnawati, H. (2017a). Model pembelajaran creative problem solving dalam pembelajaran matematika SMA. In Desain pembelajaran matematika untuk melatihkan higher order thinking skills (pp. 60–118). UNY Press.
Apino, E., & Retnawati, H. (2017b). Developing instructional design to improve mathematical higher order thinking skills of students. Journal of Physics: Conference Series, 812(1).
Bassey, S. W., Umoren, G., & Udida, L. A. (2007). Cognitive styles, secondary school students’ attitude and academic performance in chemistry in Akwa Ibom State-Nigeria. Proceedings of EpiSTEME 2-International Conference to Review Research in Science, Technology and Mathematics Education, India.
Fadiana, M. (2016). Perbedaan kemampuan menyelesaikan soal cerita antara siswa bergaya kognitif reflektif dan impulsif. JRAMathEdu (Journal of Research and Advances in Mathematics Education), 1(1), 79–89
Fitriana, D. A., & Sudiana, R. (2020). Pengaruh model pembelajaran multipel. Wilangan : Jurnal Inovasi dan Riset Pendidikan Matematika 1(4)
Hu, R., Xiaohui, S., & Shieh, C.-J. (2017). A study on the application of creative problem solving teaching to statistics teaching. EURASIA Journal of Mathematics, Science and Technology Education, 13(7), 3139–3149.
Indriati, R. U., Nindiasari, H., & Fathurrohman, M. (2019). Peningkatan kemampuan berpikir kreatif dan kemampuan pemecahan masalah matematis ditinjau dari tahap perkembangan kognitif melalui pembelajaran probing-prompting. Jurnal Penelitian Pengajaran Matematika 1, 35–46.
Kebudayaan, K. P. dan. (2013). Kurikulum 2013. Jakarta: Kementrian Pendidikan dan Kebudayaan.
Lahinda, Y., & Jailani, J. (2015). Analisis proses pemecahan masalah matematika siswa sekolah menengah pertama. Jurnal Riset Pendidikan Matematika, 2(1), 148–161.
Miatun, A., & Nurafni, N. (2019). Profil kemampuan berpikir kreatif matematis ditinjau dari gaya kognitif reflective dan impulsive. Jurnal Riset Pendidikan Matematika, 6(2), 150–164.
Muzayyanah, A., & Wutsqa, D. U. (2019). Effectiveness of problem posing and investigation in terms of problem solving abilities, motivation and achievement in mathematics. Annals of Mathematical Modeling, 1(2).
Moleong, L. J. (2007). Metodologi Penelitian Kualitatif. Edisi Revisi. PT Remaja Rosdakarya.
Moleong, L. J. (2010). Metodologi penelitian kualitatif (Revised ed.). Bandung: PT. Remaja Rosdakarya.
Rozencwajg, P., & Corroyer, D. (2005). Cognitive processes in the reflective-impulsive cognitive style. The Journal of Genetic Psychology, 166(4), 451–463.
Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. Zdm, 29(3), 75–80.
Siswono, Tatag Y E. (2005). Upaya meningkatkan kemampuan berpikir kreatif siswa melalui pengajuan masalah. Jurnal Pendidikan Matematika Dan Sains, 10(1), 1–9.
Siswono, Tatag Yuli Eko. (2008). Model pembelajaran matematika berbasis pengajuan dan pemecahan masalah untuk meningkatkan kemampuan berpikir kreatif. Surabaya: Unesa university press.
Solso, R. L. (1995). Cognitive Psychology. MA: Allyn & Bacon.
Sundayana, R. (2016). Media dan Alat Peraga dalam Pembelajaran Matematika: untuk guru, calon guru, orang tua dan para pecinta matematika.
Wahyudi, W., Waluya, S. B., Rochmad, R., & Suyitno, H. (2017). Mathematical creative thinking ability and scaffolding process according with learning styles for pre-service teachers. Anatolian Journal of Education, 3(1), 1–12.
Wardani & Rumiyati. (2011). Instrumen Penilaian Hasil BelajarMatematika SMP (Belajar PISA dan TIMSS). Bumi Aksara.
Warli, W. (2010). Profile creativity cognitive style reflective students and student cognitive style impulsiveness in solving geometry problems. Universitas Negeri Surabaya
Copyright (c) 2022 Journal of Education and Learning Mathematics Research (JELMaR)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Copyright of the published articles will be transferred to the journal as the publisher of the manuscripts. Therefore, the author confirms that the copyright has been managed by the journal.
- Authors can publish papers separately, arrange non-exclusive distribution of manuscripts that have been published in this journal into other versions by acknowledging that the manuscripts have been published for the first time in Journal of Education and Learning Mathematics Research (JELMaR).
- The copyright follows Creative Commons Attribution–ShareAlike License (CC BY SA): This license allows to Share — copy and redistribute the material in any medium or format, Adapt — remix, transform, and build upon the material, for any purpose, even commercially.