Students' Reflective Abstraction in Solving Ethnomathematics-Based Mathematics Problems

  • Jesika Nur Intan Balila Universitas PGRI Argopuro Jember, Indonesia
  • Eric Dwi Putra Universitas PGRI Argopuro Jember, Indonesia
  • lutfiyah Lutfiyah Universitas PGRI Argopuro Jember, Indonesia
Keywords: reflective abstraction, math skills, problem solving

Abstract

Reflective abstraction is a process of reflection on previously learned concepts and applied in new situations. The purpose of this study is to describe the reflective abstraction ability of junior high school students in solving math problems in terms of mathematical ability. In this study using qualitative research type. The data sources for this study were 4 students of class VIII, namely 2 students with high ability and 2 students with low ability. The results showed that students who have high ability, recognition level to remember and identify previous activities related to the problem at hand. At the representation level, students can translate information into mathematical models correctly. At the structural abstraction level, students can solve problems correctly, and are able to overcome difficulties in solving problems. At the structural awareness level, students are able to provide arguments about the results of the answers that have been done. While students with low ability, at the recognition level are able to remember previous activities related to the problem at hand. At the representation level, students are able to translate information into mathematical models, but students are less careful and wrong so that at the structural abstraction level students are able to solve problems, but the final results obtained are not correct. At the structural awareness level, students are able to solve and explain the steps in the problem. Based on the results of the study, teachers should guide students by providing problem exercises that can increase reflective abstraction, especially considering student responses and learning outcomes collected from high and low ability students. For this reason, further research needs to be carried out with other student data sources.

References

Bachtiar, F. N., & Susanah, S. (2021). Abstraksi Reflektif Siswa Berkemampuan Matematika Tingkat Tinggi Dalam Pemecahan Masalah Lingkaran. MATHEdunesa, 10(2), 266–278. https://doi.org/10.26740/mathedunesa.v10n2.p266-278

Ekawati, & Saragih, M. J. (2018). Kesulitan Belajar Matematika Berkaitan dengan Konsep pada Topik Aljabar: Studi Kasus pada Siswa Kelas VII Sekolah ABC Lampung. A Journal of Language, Literature, Culture, and Education POLYGLOT, 14(1), 53–64.

Fajriyah, N., & Susanah. (2018). Profil Kemampuan Abstraksi Reflektif Siswa Dalam Menyelesaikan Masalah Geometri Ditinjau Dari Gaya Belajar. Jurnal Ilmiah Pendidikan Matematika, 7(3), 21–29. https://jurnalmahasiswa.unesa.ac.id/index.php/mathedunesa/article/view/25554/23429

Hariastuti R. (2017). Permainan Tebak-Tebak Buah Manggis: Sebuah Inovasi Pembelajaran Matematika Berbasis Etnomatematika (the Mangosteene Guess Game: a Mathematics Learning Inovation Based on Ethnomathematics). 2(1), 25–35.

Herawaty, D., Widada, W., Nugroho, K. U. Z., & Anggoro, A. F. D. (2019). The Improvement of the Understanding of Mathematical Concepts through the Implementation of Realistic Mathematics Learning and Ethnomathematics. 295(ICETeP 2018), 21–25. https://doi.org/10.2991/icetep-18.2019.6

Kërënxhi, S., & Gjoci, P. (2017). Involvement of Algebraic-Geometrical Duality in Shaping Fraction’s Meaning and Calculation Strategies with Fractions. Journal of Educational and Social Research, 7(1), 151–157. https://doi.org/10.5901/jesr.2017.v7n1p151

Mawaddah, S., & Anisah, H. (2015). Kemampuan Pemecahan Masalah Matematis Siswa Pada Pembelajaran Matematika dengan Menggunakan Model Pembelajaran Generatif (Generative Learning) di SMP. EDU-MAT: Jurnal Pendidikan Matematika, 3(2), 166–175. https://doi.org/10.20527/edumat.v3i2.644

Putra, E. D., Sullystiawati, L. H., & Sari, Y. I. (2023). Pendampingan Inovasi Pembelajaran Matematika SMP Melalui Permainan Ular Tangga Berbasis Etnomatematika. Dedication, 119–128.

Putri, R. irjayanti, & Santosa, R. heri. (2015). Keefektifan strategi REACT ditinjau dari prestasi belajar, kemampuan penyelesaian masalah, koneksi matematis, self-efficacy. Jurnal Riset Pendidikan Matematika, 2(2), 262–272. https://doi.org/10.21831/jrpm.v2i2.7345

Rahmatul, R. (2017). Motivasi dan Hasil Belajar Matematika Berbasis Etnomatematika (Budaya Matematika) dengan Permainan Tradisional Congklak Pada siswa Kelas VII MTSN 12 Tanah Datar.

Rossydha, F., Nusantara, T., & Sukoriyanto, S. (2021). Commognitive Siswa dalam Menyelesaikan Masalah Persamaan Linier Satu Variabel. Jurnal Pendidikan: Teori, Penelitian, Dan Pengembangan, 6(1), 1. https://doi.org/10.17977/jptpp.v6i1.14367

Sriwahyuni, K., & Maryati, I. (2022). Kemampuan Pemecahan Masalah Matematis Siswa Pada Materi Program Linear. Inomatika, 4(1), 19–30. https://doi.org/10.35438/inomatika.v4i1.279

Sutrisna, N. (2021). Kemampuan abstraksi reflektif matematis siswa pada materi bangun ruang. 2(1), 26–32. https://doi.org/10.34007/jdm.v2i1.598

Ulia, N., Waluya, S. B., Hidayah, I., & Pudjiastuti, E. (2018). Abstraksi Reflektif Matematis Mahasiswa PGSD.

Wiryanto. (2014). LEVEL-LEVEL ABSTRAKSI DALAM PEMECAHAN MASALAH MATEMATIKA Abstrak. 569–578.

Published
2023-11-30
How to Cite
Balila, J., Putra, E., & Lutfiyah, lutfiyah. (2023). Students’ Reflective Abstraction in Solving Ethnomathematics-Based Mathematics Problems. Journal of Education and Learning Mathematics Research (JELMaR), 4(2), 127-143. https://doi.org/10.37303/jelmar.v4i2.117
Section
Articles