Students’ Error Analysis in solving Contextual Problem of Flat-Sided Geometry Based on Nolting’s Theory Depends on Gender

  • Anissa Teguh Saputri Universitas PGRI Madiun
  • Edy Suprapto Universitas PGRI Madiun
  • Swasti Maharani Universitas PGRI Madiun
Keywords: error analysis, nolting’s theory, gender

Abstract

When students solve math problems with flat-sided geometry, there are still many errors made by students. This is because mathematics has mathematical concepts and principles that students do not understand well, so that it can cause errors in solving mathematical problems of flat-sided geometry. The purpose of this study is to analyze the types of student errors in solving the problem of flat-sided geometry depends on Nolting's Theory. This research uses a qualitative approach. The instrument used is a flat-sided geometry test and interview guidelines. The results of this study can be used as an effort to improve students' ability in solving contextual problems in the material of building a flat side space. Based on the results of the study, information was obtained that there were 5 types of errors, namely reading instructions errors, carelessness errors, conceptual errors, application errors, students' test errors in solving contextual problems based on Nolting's theory. Male student subjects in solving contextual problems of flat-sided wake-up material made a lot of reading errors, carelessness errors, conceptual errors, and test-taking errors. Female student subjects in solving contextual problems with flat-sided geometry make a lot of errors, including carelessness, application errors, and test-taking errors.

References

Bambang Irawan, E., & Daniel Chandra, T. (2017). Kesalahan Siswa Smp Dalam Menyelesaikan Soal Bangun Datar Segiempat Berdasarkan Teori Nolting.

Dewi, D. K., Khodijah, S. S., Zanthy, L. S., Siliwangi, I., Terusan Jenderal, J., & Cimahi, S. (2020). Analisis Kesulitan Matematik Siswa Smp Pada Materi Statistika. 04(01), 1–7.

Fathiyah. (2020). Ifa Fathiyah, 2020 Analisis Kualitatif Kesalahan Pengerjaan Soal Matematika Tipe Hots Berdasarkan Teori Nolting Pada Siswa Smp Universitas Pendidikan Indonesia | Repository.Upi.Edu | Perpustakaan.Upi.Edu.

Faturrochmah. (2021). Kesalahan Siswa Dalam Mengerjakan Soal Materi Bangun Datar Berdasarkan Teori Nolting Pada Siswa Kelas Iv Sd. 8, 310–321.

Fitriani, N., Suryadi, D., & Darhim, D. (2018). Analysis Of Mathematical Abstraction On Concept Of A Three Dimensional Figure With Curved Surfaces Of Junior High School Students. Journal Of Physics: Conference Series, 1132(1). Https://Doi.Org/10.1088/1742-6596/1132/1/012037

Hasibuan, E. K. (2018). Analisis Kesulitan Belajar Matematika Siswa Pada Pokok Bahasan Bangun Ruang Sisi Datar Di Smp Negeri 12 Bandung. Axiom : Jurnal Pendidikan Dan Matematika, 7(1), 18–30. Https://Doi.Org/10.30821/Axiom.V7i1.1766

Hasan, N., Subanji, S., & Sukorianto, S. (2019). Analisis Kesalahan Siswa Kelas VIII dalam Menyelesaikan Soal Cerita Terkait Teorema Pythagoras. Jurnal Pendidikan: Teori, Penelitian, Dan Pengembangan, 4(4), 468-477.

Oktafia, R., & Sutama, M. P. (2019).Analisis Kesalahan Dalam Menyelesaikan Soal Geometri Berorientasi Pisa Ditinjau Dari Gender Pada Siswa Kelas VIII Smp Muhammadiyah 2 Masaran (Doctoral dissertation, Universitas Muhammadiyah Surakarta).

Rahmawati, N. K. (2017). Penerapan Model Pembelajaran Matematika Menggunakan Model Savi dan Vak Pada Materi Himpunan Terhadap Prestasi Belajar Siswa Kelas VII. Jurnal Ilmiah Pendidikan Matematika, 5(2), 21-24.

Rosyidi, A. H. (2020). Analisis kesalahan siswa kelas II MTs AlKhoiriyah dalam menyelesaikan soal cerita yang berkaitan SPLDV.Surabaya: Tesis UNESA.

Sarwoedi, S. (2019). Analisis Kesalahan Siswa Dalam Menyelesaikan Soal Matematika Berdasarkan Kriteria Watson. Jurnal Mathematic Paedagogic, 4(1), 12.

Sumiati, A., & Agustini, Y. (2020). Analisis kesulitan menyelesaikan soal segi empat dan segitiga siswa smp kelas viii di cianjur. 04(01), 321–330.

Published
2022-08-16
How to Cite
Saputri, A. T., Suprapto, E., & Maharani, S. (2022). Students’ Error Analysis in solving Contextual Problem of Flat-Sided Geometry Based on Nolting’s Theory Depends on Gender. Journal of Education and Learning Mathematics Research (JELMaR), 3(1), 84-92. https://doi.org/10.37303/jelmar.v3i1.77
Section
Articles