Forward Time Center Space Algorithm for Mathematical Model Solution of Heat Transfer
Abstract
Heat transfer is a physical phenomenon that can be represented in the form of a mathematical model. In this study, heat transfer occurs in a viscoelastic fluid through an elliptic cylinder surface with free convection flow. The mathematical model of heat transfer is obtained from partial differential equations and solved numerically using the Forward Time Center Space (FTCS) scheme. Numerical solution is carried out based on an algorithm compiled by an iterative process according to a predetermined point. The iteration process is carried out until it produces a stable and convergent value. Furthermore, the algorithm is implemented into the Matlab programming language with the influence of a heat variable, namely the Prandtl number (Pr). Several test results that have been carried out during the iteration process have shown that the FTCS scheme is stable along the space and time grid. In addition, this scheme shows that the obtained difference equations are proven to produce consistent and convergent graphs. Based on the resulting graph, the greater the value of the Prandtl number, the smaller the resulting temperature. This is in accordance with the definition of the Prandtl number, which is the heat determining parameter which is the ratio between the kinematic viscosity value and the heat diffusivity, so that the large Prandtl number can inhibit heat transfer that occurs on the surface of the object.
References
Afifah, Y. N., & Putra, B. C. (2018). Model Matematika Aliran Tak Tunak Pada Nano Fluid Melewati Bola Teriris Dengan Pengaruh Medan Magnet. Teknika: Engineering and Sains Journal, 2(2), 119. https://doi.org/10.51804/tesj.v2i2.274.119-124
Annisa dwi sulistyanigsih. (2021). Article, Page 44 - 52. 4(1), 44–52.
Cheng, C. Y. (2012). Free convection of non-Newtonian nanofluids about a vertical truncated cone in a porous medium. International Communications in Heat and Mass Transfer. https://doi.org/10.1016/j.icheatmasstransfer.2012.08.004
El Maghfiroh, R., Khusniah, R., & Sholeh, M. (2019). SIMULASI NUMERIK PERPINDAHAN PANAS BATANG BAJA MENGGUNAKAN SKEMA BEDA HINGGA KOMPAK PADA METODE CRANK-NICOLSON. Transformasi : Jurnal Pendidikan Matematika Dan Matematika. https://doi.org/10.36526/tr.v3i02.708
Hapsoro, C. A., & Srigutomo, W. (2018). 2-D Fluid Surface Flow Modeling using Finite-Difference Method Pemodelan Aliran Fluida 2-D Pada Kasus Aliran Permukaan 2-D Fluid Surface Flow Modeling using Finite-Difference Method. August 2013.
Havid Syafwan, Mahdhivan Syafwan, William Ramdhan, R. A. Y. (2018). Pemrograman Komputasi Rumus Eksplisit Metode Beda Hingga Untuk Turunan Pertama Dengan Menggunakan Matlab. Seminar Nasional Royal (SENAR), 9986(September), 61–68. https://jurnal.stmikroyal.ac.id/index.php/senar/article/viewFile/140/86
Imron, C., Suhariningsih, Widodo, B., & Yuwono, T. (2013). Numerical simulation of fluid flow around circular and I-shape cylinder in a tandem configuration. Applied Mathematical Sciences. https://doi.org/10.12988/ams.2013.39490
Kasim, A. R. M. (2014). Convective Boundary Layer Flow of Viscoelastic Fluid. In Universiti Teknologi Malaysia, Faculty of Science: Ph. D. Thesis.
Mahat, R., Rawi, N. A., Kasim, A. R. M., & Shafie, S. (2017). Mixed convection boundary layer flow of viscoelastic nanofluid past a horizontal circular cylinder: Case of constant heat flux. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/890/1/012052
Mardianto, L. (2018). Solusi Numerik dari Aliran Fluida Magnetohidrodinamik Konveksi Campuran Melalui Bola Bermagnet-Numerical Solution Of The Model Of ….
Martanegara, H. A., & Yulianti, K. (2020). Model Matematika Fluida Lapisan Tipis Pada Bidang Miring. Jurnal EurekaMatika, 8(1), 29–41.
Mohammad, N. F. (2014). Unsteady Magnetohydrodynamics Convective Boundary Layer Flow Past A Sphere in Viscous and Micropolar Fluids. Universiti Technology Malaysia, Malaysia.
Pendahuluan, I. (2019). Implementasi Algoritma Backward Time Central Space Pada Penyelesaian Model Distribusi Panas. 9.
Purnami, D., Putri, S., Sukarsa, I. M., Ngurah, G., & Agustika, S. (2018). Analisis Kestabilan Numerik Metode Beda Hingga pada Persamaan Getaran Membran dan Simulasinya. September, 8–11.
Sahaya, R., Widodo, B., Imron, C., & Matematika, J. (2016). Aliran Fluida Magnetohidrodinamik Viskoelatis Tersuspensi yang Melewati Pelat Datar. Jurnal Sains Dan Seni ITS.
Tiwow, V. A., Malago, J. D., Fisika, J., Matematika, F., & Alam, P. (2015). Penerapan Persamaan Navier-Stokes Untuk Kasus Aliran Fluida Laminer Pada Pipa Tidak Horizontal Application of Navier-Stokes Equations To Laminar Fluid Flow Case In Unhorizontal Pipe. IV(1), 51–56.
Copyright (c) 2022 Journal of Education and Learning Mathematics Research (JELMaR)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Copyright of the published articles will be transferred to the journal as the publisher of the manuscripts. Therefore, the author confirms that the copyright has been managed by the journal.
- Authors can publish papers separately, arrange non-exclusive distribution of manuscripts that have been published in this journal into other versions by acknowledging that the manuscripts have been published for the first time in Journal of Education and Learning Mathematics Research (JELMaR).
- The copyright follows Creative Commons Attribution–ShareAlike License (CC BY SA): This license allows to Share — copy and redistribute the material in any medium or format, Adapt — remix, transform, and build upon the material, for any purpose, even commercially.